

The impact of COVID-19 lockdowns on air quality in European urban areas

Annual Meeting of the TFMM – May 11 and 12, 2021

Stuart K. Grange^{1,2,*}

Presented online on May 11, 2021 in the "Impact of COVID-19 2020 lockdown on European air quality" session

¹Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Swizerland ²Wolfson Atmospheric Chemistry Laboratories, University of York, York, YO10 5DD, United Kingdom *stuart.grange@empa.ch

Introduction

- The first COVID-19 lockdowns imposed unprecedented restrictions on the mobility of the European population between March and May, 2020
- The lockdowns had many positive environmental effects, including the reduction of CO₂ and air pollutant emissions^{1,2}
- Here, the changes on air quality throughout European urban areas will be explored
 - Nitrogen dioxide (NO₂), primarily a road traffic-sourced pollutant and ozone (O₃), a secondary pollutant will be focused on

¹Le Quéré et al. 2020, Nature Climate Change

²Shi et al. 2021 *Science Advances*

- The mobility of the European population was dramatically altered during the periods when lockdowns were applied
- Such changes in mobility should be clearly visible in air quality monitoring data

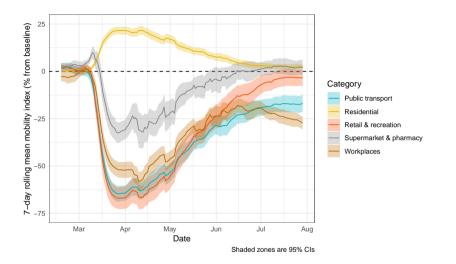
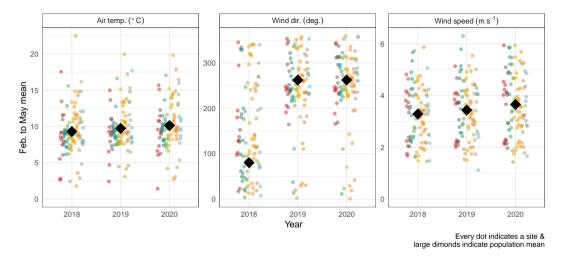



Figure 1: Google mobility data¹ for Europe between mid-February and July, 2020.

¹Google, COVID-19 Community Mobility Reports

A note on the weather

• The analysis of the effect of the lockdown on air quality is complicated by the unusual weather situation in the first few months of 2020 – this is a classic air quality data analysis issue and needs careful management

Analysis approach

- The concentrations experienced in the first half of 2020 could be compared to an estimate of "what would have been" if the lockdowns did not occur
- An estimate of what would have happened can be called a business-as-usual (BAU) scenario or a *counterfactual*
- The observed and predicted concentrations can be readily compared

Methods

- Random forest models^{1,2} were trained to explain NO₂, O₃, and total oxidant $(O_x = NO_2 + O_3)$ concentrations using surface meteorological variables
- 246 ambient air pollution monitoring sites in 102 urban areas and 34 countries were included in the analysis
- After training and checking of the models' skill, these models were used in predictive-mode to create a counterfactual which the observed concentrations could be compared with
- Change point models based on Bayesian inference³ were used to identify the timing and magnitude of changes

¹Grange et al., 2018, Atmospheric Chemistry and Physics

²Grange & Carslaw, 2019, Science of the Total Environment

³Lindeløv, 2020, mcp

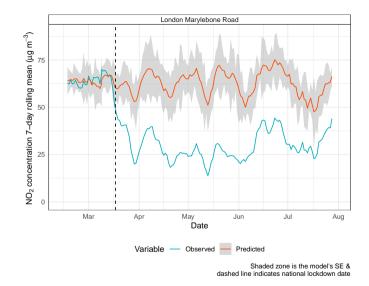
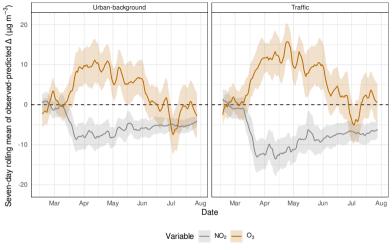



Figure 3: Observed and predicted NO₂ concentrations for London Marylebone Road between mid-February and July 31, 2020.

Results

- $\bullet~\text{NO}_2$ decreased by about a third across European urban areas
- The reduction in NO $_2$ was equal to 7.6 years of reduction, based on the mean European trend between 2010 and 2019
- O_3 increased between 21–31 % based on site type (background and traffic sites respectively)
- O_x did not change, but there was some reduction at roadside sites which was probably due to decreases in traffic-sourced primary NO₂ emissions

Shaded zones are SDs of the means

Figure 4: Seven-day rolling means of the observed-predicted concentrations deltas for NO_2 and O_3 for all European sites analysed between February 14 and July 31, 2020

		NO ₂		O ₃		O _x	
Country	Site type	Δ ($\mu \mathrm{g}\mathrm{m}^{-3}$)	% change	Δ ($\mu \mathrm{g}\mathrm{m}^{-3}$)	% change	Δ (ppb)	% change
Austria	Traffic	-7.6	-24.5	_	-	-	-
Austria	Urban-back.	-5.2	-23.1	11.3	19.5	4.3	11.2
Belgium	Traffic	-10.8	-45.3	5.0	10.5	-2.2	-6.5
Belgium	Urban-back.	-9.5	-38.4	8.9	19.2	2.4	6.5
France	Traffic	-20.3	-54.2	_	_	_	_
France	Urban-back.	-11.2	-44.1	13.9	35.0	-4.9	-12.1
Germany	Traffic	-10.5	-29.3	15.1	37.3	3.0	7.5
Germany	Urban-back.	-4.9	-21.6	8.8	16.6	3.5	9.1
Greece	Traffic	-12.3	-37.1	NC	NC	-1.1	-0.4
Greece	Urban-back.	-9.5	-43.9	NC	NC	-3.8	-8.5
Italy	Traffic	-17.3	-31.9	_	-	-	-
Italy	Urban-back.	-12.5	-32.7	3.8	14.1	-1.5	-2.2
Spain	Traffic	-22.8	-57.2	21.0	61.9	-1.5	-2.8
Spain	Urban-back.	-16.4	-55.7	15.9	37.5	-2.2	-5.4
Switz.	Traffic	-5.5	-17.2	10.9	22.1	5.1	13.0
Switz.	Urban-back.	-3.3	-10.1	11.7	21.7	5.2	14.4
UK	Traffic	-14.4	-50.8	14.4	45.8	-3.8	-8.3
UK	Urban-back.	-8.1	-36.8	8.0	16.4	0.0	0.1

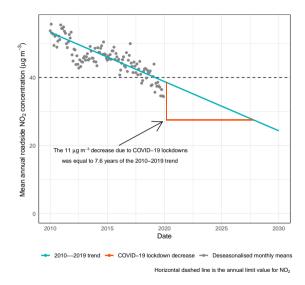


Figure 5: Mean European roadside NO_2 trend with the reduction of NO_2 concentrations attributed to the COVID-19 lockdowns put in context.

Results continued

- The dates when concentrations diverged from the counterfactual were consistent with the dates of when nationwide lockdowns were applied
- For NO₂, the dates were very clear, but for O₃, this was a bit weaker, probably due to the different generation, lifetime, and spatial-scale characteristics of this gas

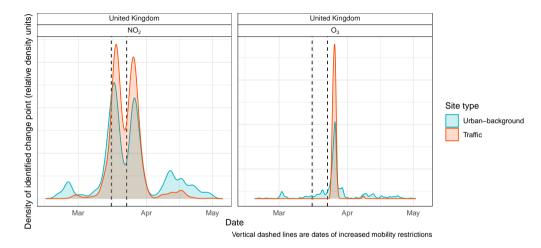


Figure 6: Densities of detected change points for NO_2 and O_3 in the United Kingdom between March and May, 2020. Note the double peak for NO_2 .

Implications

- The analysis approach of using machine learning derived models to calculate counterfactuals and Bayesian change point analysis was powerful
- The reductions of NO_2 by about a third were almost completely supplanted by increases in O_3
- This pattern represents the general trend of what has occurred in the last couple of decades, but the COVID-19 lockdowns exacerbated the trends for a few months in 2020
- The near-complete replacement of NO₂ with O₃ is somewhat surprising and indicates that urban European atmospheres are VOC limited in respect to O₃ generation
- The analysis gives a glimpse of a likely future situation where fewer vehicles powered by internal combustion engines are in use and highlights future issues with urban O_3 management

- What has occurred in rural locations throughout Europe?
- How did particulate matter (PM) concentrations respond? This is a harder pollutant to investigate due a more diverse suite of sources and processes
- Many European countries have seen second, or third, less severe lockdowns in 2020 and 2021, the pollutant responses for these periods have not been investigated yet

I thank my co-authors from Empa, University of York, and Ricardo Energy & Environment for their contributions.

For additional information, please see the paper:

Grange, S. K., Lee, J. D., Drysdale, W. S., Lewis, A. C., Hueglin, C., Emmenegger, L., and Carslaw, D. C. (2021). COVID-19 lockdowns highlight a risk of increasing ozone pollution in European urban areas. *Atmospheric Chemistry and Physics*. 21.5. https://acp.copernicus.org/articles/21/4169/2021.

Figure 7: You can find these presentation slides here.